
Speech REcognition
- a practical guide

Lecture 3
Phonetic

Context Dependency

Aligning data with monophone system

Training triphone system

Steps covered in this lecture
$ cd ~/kaldi-trunk/rm/s3/
$
$ # Get alignments from monophone system.
$ steps/align_deltas.sh data/train data/lang exp/mono exp/mono_ali
$
$ # train tri1 [first triphone pass]
$ steps/train_deltas.sh data/train data/lang exp/mono_ali exp/tri1
$

Phones “sound different” in different contexts.

Most strongly affected by phones immediately
before/after.

Simplest model of context dependency is to
build separate model per “triphone” context.

For 38 phones, #models required is 38x38x38

Too many models to train!

Weakness of
“monophone” model

Build a “decision tree” for each “monophone”

This follows the “Clustering and Regression
Tree” (CART) framework

Involves a “greedy” (locally optimal) splitting
algorithm.

Ask questions like “Is the left phone a vowel?”
Is the right phone the phone “sh”?

Models (HMMs) would correspond to the leaves

Traditional context-
dependency tree

“m”

Left=vowel?
Yes No

Right=fricative?
Yes No

Square boxes correspond to Hidden Markov Models

Train a monophone system (or use previously
built triphone system) to get time alignments
for data.

For each seen triphone, accumulate sufficient
statistics to train a single Gaussian per HMM
state

Suff. stats for Gaussian are (count, sum, sum-
squared).

Total stats size (for 39-dim feats):

(38x38x38) * (3 HMM-states) * (39+39+1)

Traditional tree-building

But not all
triphones seen!

Align more of the training data using the
monophone model.

We saw the alignment format last time
(sequences of integers)

Note: exp/mono has alignments too, but need it
on more data (and with very last model).

Building the triphone system
$ cd ~/kaldi-trunk/rm/s3/
$
$ # Get alignments from monophone system.
$ steps/align_deltas.sh data/train data/lang exp/mono exp/mono_ali
$
$ # train tri1 [first triphone pass]
$ steps/train_deltas.sh data/train data/lang exp/mono_ali exp/tri1
$

Alignments go in file “exp/mono_ali/ali”

--beam=8, --retry-beam=40 important options

For Viterbi pruning

If don’t reach end-state with beam=8, retry
with beam=40, then give up.

Getting data alignments
$ cd ~/kaldi-trunk/egs/rm/s3
$ head -1 exp/mono_ali/align.log
gmm-align --transition-scale=1.0 --acoustic-scale=0.1 --self-loop-
scale=0.1 --beam=8 --retry-beam=40 exp/mono_ali/tree exp/mono_ali/
final.mdl data/lang/L.fst 'ark:apply-cmvn --norm-vars=false --
utt2spk=ark:data/train/utt2spk ark:exp/mono_ali/cmvn.ark scp:data/train/
feats.scp ark:- | add-deltas ark:- ark:- |' ark:exp/mono_ali/train.tra
ark:exp/mono_ali/ali

Rest of lecture will be about this stage.

Building the triphone system
$ cd ~/kaldi-trunk/rm/s3/
$
$ # Get alignments from monophone system.
$ steps/align_deltas.sh data/train data/lang exp/mono exp/mono_ali
$
$ # train tri1 [first triphone pass]
$ steps/train_deltas.sh data/train data/lang exp/mono_ali exp/tri1
$

Double-precision stats.

Max. possible size is 38^3*3*(39+39+1) * 8 = 104M

Actual size 14M (~15% of triphones seen).

Getting stats for tree
$ cd ~/kaldi-trunk/egs/rm/s3
$ ls -l exp/tri1/treeacc
-rw-r--r-- 1 dpovey clsp 14M Feb 7 20:57 exp/tri1/treeacc
$ cat exp/tri1/acc.tree.log
acc-tree-stats --ci-phones=48 exp/mono_ali/final.mdl 'ark:apply-cmvn --norm-vars=false --
utt2spk=ark:data/train/utt2spk ark:exp/mono_ali/cmvn.ark scp:data/train/feats.scp ark:- |
add-deltas ark:- ark:- |' ark:exp/mono_ali/ali exp/tri1/treeacc
apply-cmvn --norm-vars=false --utt2spk=ark:data/train/utt2spk ark:exp/mono_ali/cmvn.ark
scp:data/train/feats.scp ark:-
add-deltas ark:- ark:-
LOG (acc-tree-stats:main():acc-tree-stats.cc:113) Processed 1000 utterances.
LOG (acc-tree-stats:main():acc-tree-stats.cc:113) Processed 2000 utterances.
LOG (acc-tree-stats:main():acc-tree-stats.cc:113) Processed 3000 utterances.

This data is for HMM-state 0, phonetic context
(0,10,22), = “<eps>/d/ih” (as in “DID” at start of
sentence).

Count of 1st state is 10

Next two lines are data sum, sum-squared.

Looking at tree stats
$. path.sh
$ sum-tree-stats --binary=false - exp/tri1/treeacc | less
BTS 19268
EV 4 -1 0 0 0 1 10 2 22
T GCL 10 0.01 [
 -319.4122 -47.78007 221.1587 158.8115 335.7153 192.0782 20.63128 99.35792 -48.65273
71.48264 -30.99772 -121.76 16.75381 9.745302 26.61232 20.03452 31.32775 25.1797 8.662501
-11.21577 -10.93547 -5.706181 -8.542741 -17.79073 -14.53732 -4.358661 3.026504 -3.41487
-4.261815 -2.914604 -8.994694 -2.071367 -0.131388 3.215806 2.529252 1.733106 1.000433
2.846173 5.605232
 10381.26 1351.984 5520.843 4398.474 12389.38 4130.489 488.7585 1483.611 477.1437 822.2339
1032.555 1925.231 277.2069 19.61546 131.6582 93.57193 264.0651 142.572 61.74911 31.82133
38.00629 46.85469 62.60578 108.7827 51.53504 58.33066 7.887114 18.35285 18.01356 37.78245

There are 19268 states with stats (this is 3x
#seen triphones).

Object in yellow/orange/red is “Event Vector”

Consider as a set of key-value pairs.

The 0.01 is a variance floor (in here for C++
reasons, although shared among all stats..)

Looking at tree stats
$. path.sh
$ sum-tree-stats --binary=false - exp/tri1/treeacc | less
BTS 19268
EV 4 -1 0 0 0 1 10 2 22
T GCL 10 0.01 [
 -319.4122 -47.78007 221.1587 158.8115 335.7153 192.0782 20.63128 99.35792 -48.65273
71.48264 -30.99772 -121.76 16.75381 9.745302 26.61232 20.03452 31.32775 25.1797 8.662501
-11.21577 -10.93547 -5.706181 -8.542741 -17.79073 -14.53732 -4.358661 3.026504 -3.41487
-4.261815 -2.914604 -8.994694 -2.071367 -0.131388 3.215806 2.529252 1.733106 1.000433
2.846173 5.605232
 10381.26 1351.984 5520.843 4398.474 12389.38 4130.489 488.7585 1483.611 477.1437 822.2339

Fire a Linguist
The late Fred Jelinek (founding
director of the CLSP)

Reported to have said, “Every
time I fire a linguist, the error
rate goes down.”

Apparently he insisted this had
been taken out of context...

Fred championed the “purely statistical” approach
to speech recognition.

In the same spirit, in Kaldi we avoid the use of
“meaningful” hand-generated phonetic questions.

We cluster the phones to get questions.

A question is just a set of phones.

Would normally be a phonetic category.

Here, just clusters based on acoustic similarity.

Tree clustering -> hierarchy of sets of all sizes.

Clustering the phones
$ less steps/train_deltas.sh
.
<snip>
.
echo "Computing questions for tree clustering"

cat $lang/phones.txt | awk '{print $NF}' | grep -v -w 0 > $dir/phones.list
cluster-phones $dir/treeacc $dir/phones.list $dir/questions.txt 2> $dir/questions.log ||
exit 1;

Some of the smaller sets look meaningful.

Not all do, e.g. “aa” and “f” are not similar

Questions in next stage (tri2a) are a bit better

Presumably, monophone alignments are poor
quality.

Looking at the questions
$ # line from steps/train_deltas.sh:
$ # scripts/int2sym.pl $lang/phones.txt < $dir/questions.txt > $dir/questions_syms.txt
$ less exp/tri1/questions_syms.txt
aa
aa ae aw ay eh ey f ow ts sil
aa ae aw ay eh ey ow
aa ae aw ay eh ow
aa aw ay ow
aa aw ow
ae
ae eh

This clustering algorithm only used for a small
part of the system (getting the questions)...

but useful introduction to Kaldi’s framework for
clustering and decision trees.

Abstract C++ interface “ClusterableInterface”

Represents some kind of stats and associated
model type, from which we can get an
objective function

Stats can be added together.

Clustering algorithm

Clustering routines act on generic objects
satisfying this interface.

In our stats, Objf() returns a Gaussian likelihood

We’ll split at the root to maximize the data
likelihood, then split each branch...

Clusterable interface
$ cd ~/kaldi-trunk/src
$ less itf/clusterable-interface.h
class Clusterable {
 public:
 <snip>
 virtual double Objf() const = 0; // returns objective function
 virtual BaseFloat Normalizer() const = 0; // typically returns data-count.
 virtual void Add(const Clusterable &other) = 0; // Adds other stats to this...
 virtual Clusterable *Copy() const; // Copy the object.
 <snip>

GaussClusterable represents statistics for a
Gaussian distribution.

Contains count, sum and sum-squared of data (as in
the tree-stats we saw).

Clusterable object
$ less tree/clusterable-classes.h
<snip>
class GaussClusterable: public Clusterable {
 public:
<snip>
 virtual void Add(const Clusterable &other_in);
 virtual void Sub(const Clusterable &other_in);
 virtual BaseFloat Normalizer() const { return count_; }
 virtual Clusterable *Copy() const;
<snip>
 double count_;
 Matrix<double> stats_; // two rows: sum, then sum-squared.
 double var_floor_; // should be common for all objects created.

the Add() function is very simple-- just add the
stats together.

Adding stats
$ less tree/clusterable-classes.cc
<snip>
void GaussClusterable::Add(const Clusterable &other_in) {
 assert(other_in.Type() == "gauss");
 const GaussClusterable *other =
 static_cast<const GaussClusterable*>(&other_in);
 count_ += other->count_;
 stats_.AddMat(1.0, other->stats_);
}

Compute the variance of the Gaussian

Return the expected likelihood, times the count...

Note: we apply a variance floor (otherwise the
likelihood can go to infinity).

Getting likelihood
$ less tree/clusterable-classes.cc
<snip>
BaseFloat GaussClusterable::Objf() const {
 size_t dim = stats_.NumCols();
 Vector<BaseFloat> vars(dim);
 for (size_t d = 0; d < dim; d++) {
 double mean(stats_(0, d) / count_), var = stats_(1, d) / count_ - mean
 * mean;
 var = std::max(var, var_floor_);
 vars(d) = var;
 }
 BaseFloat ans = -0.5 * (vars.SumLog() + M_LOG_2PI * dim);
 return ans * count_;
}

Note: phone_sets and phone_sets_out both of
type vector<vector<int32> >

phone_sets is just a single vector containing all
the phones, in our example

A mechanism to let you keep some phone sets
together through clustering.

Clustering code
$ cd ~/kaldi-trunk/src
$ less bin/cluster-phones.cc
<snip>
 AutomaticallyObtainQuestions(stats,
 phone_sets,
 hmm_position_list,
 P,
 &phone_sets_out);
<snip>

stats is of type BuildTreeStatsType

vector of pair<EventVector, ClusterableInterface*>

EventVector specifies phone, context, etc.

pdf_id_list is by default a vector containing just
“1”... specifies to use only middle HMM-state’s stats
to cluster.

Clustering code
$ cd ~/kaldi-trunk/src
$ less bin/cluster-phones.cc
<snip>
 AutomaticallyObtainQuestions(stats,
 phone_sets,
 pdf_id_list,
 P,
 &phone_sets_out);
<snip>

Note on coding style:

Variables for function outputs are passed by
pointer, and come after input parameters.

Style guide (derived from Google style guide)
dictates this.

Clustering code
$ cd ~/kaldi-trunk/src
$ less bin/cluster-phones.cc
<snip>
 AutomaticallyObtainQuestions(stats,
 phone_sets,
 pdf_id_list,
 P,
 &phone_sets_out);
<snip>

Looking at code of AutomaticallyObtainQuestions

Call to FilterStatsByKey keeps only stats from
HMM-state 1 (middle HMM-state)... configurable via
all_pdf_classes variable.

Note: kPdfClass is an enum that evaluates to -1...
this is the EventMap “key” for “pdf-class” which is
normally synonymous with HMM-state.

Inside the clustering code
$ less tree/build-tree.cc
void AutomaticallyObtainQuestions(<snip>) {
 ...
 BuildTreeStatsType retained_stats;
 FilterStatsByKey(stats, kPdfClass, all_pdf_classes,
 true, // retain only the listed positions
 &retained_stats);
 ...
}

Next statement splits stats up according to the
central phone (monophone)

Note: variable P (c.f. command-line option
--central-position) is the center of context-
window of phonemes.

Value of P is 1 for triphone, 0 for monophone.

$ less tree/build-tree.cc
void AutomaticallyObtainQuestions(<snip>) {
 ...
 ...
 std::vector<BuildTreeStatsType> split_stats; // split by phone.
 SplitStatsByKey(retained_stats, P, &split_stats);
 ...
}

Inside the clustering code

Next statement sums up all the stats for each
phoneme (over all contexts, HMM-positions).

Type of stats is now vector<Clusterable*>

I.e. we don’t have the EventVector any more,
that specifies context etc.

Phone is just index into vector.

$ less tree/build-tree.cc
void AutomaticallyObtainQuestions(<snip>) {
 ...
 ...
 ...
 std::vector<Clusterable*> summed_stats; // summed up by phone.
 SumStatsVec(split_stats, &summed_stats);
 ...
}

Inside the clustering code

Here is the main call to tree-clustering routine.

$ less tree/build-tree.cc
void AutomaticallyObtainQuestions(<snip>) {
 ...
 ...
 ...
 TreeClusterOptions topts;
 topts.kmeans_cfg.num_tries = 10; // This is a slow-but-accurate setting,
 // we do it this way since there are typically few phones.

 std::vector<int32> assignments; // assignment of phones to clusters. dim ==
summed_stats.size().
 std::vector<int32> clust_assignments; // Parent of each cluster. Dim == #clusters.
 int32 num_leaves; // number of leaf-level clusters.
 TreeCluster(summed_stats_per_set,
 summed_stats_per_set.size(), // max-#clust is all of the points.
 NULL, // don't need the clusters out.
 &assignments,
 &clust_assignments,
 &num_leaves,
 topts);
 ...
}

Inside the clustering code

Program “compile-questions” takes lists of
phonemes...

Transforms it into a C++ object (written to disk)
that contains questions for each “key” in EventMap

Sets up questions about HMM-state (0,1,2)...

Here, some options can be set that affect tree-
building.

Compiling the questions
$ cd ~/kaldi-trunk/egs/rm/s3
$ less steps/train_deltas.sh
<snip>
compile-questions $lang/topo $dir/questions.txt $dir/questions.qst 2>$dir/compile_questions.log
<snip>

$

Set up sets of phones with “shared roots” for trees

In this case, all phones have separate tree root

If phones only differ in stress or tone etc., can be
useful to share roots

This way, unseen variants still get a model.

Setting tree roots
$ cd ~/kaldi-trunk/egs/rm/s3
$ less steps/train_deltas.sh
<snip>
Have to make silence root not-shared because we will not split it.
scripts/make_roots.pl --separate $lang/phones.txt $silphonelist shared split \
 > $dir/roots.txt 2>$dir/roots.log || exit 1;

<snip>

Note: integers correspond to phones; in general,
can have lists of integers (to share roots).

shared means HMM-states 0,1,2 share a root (can
ask questions about HMM-state/pdf-id).

split means we build a decision tree for this root
(else, leave an un-split stub).

Looking at roots file
$ less exp/tri1/roots.txt
not-shared not-split 48
shared split 33
shared split 32
shared split 21
shared split 7
shared split 26
shared split 17

Actually a set of decision trees (one per root)

The max-leaves (e.g., 2000) is number of p.d.f’s

Some post-clustering done within each tree, after
splitting.

This shares leaves, but only within each tree
(e.g. per phone, not globally)

Building the decision tree
$ cd ~/kaldi-trunk/egs/rm/s3
$ less steps/train_deltas.sh
<snip>
echo "Building tree"
build-tree --verbose=1 --max-leaves=$numleaves \
 $dir/treeacc $dir/roots.txt \
 $dir/questions.qst $lang/topo $dir/tree 2> $dir/train_tree.log

Likelihood improvement from tree splitting is
important diagnostic.

More likelihood improvement is generally better
(means context is helping more).

Building the decision tree
$ less exp/tri1/train_tree.log
build-tree --verbose=1 --max-leaves=1800 exp/tri1/treeacc exp/tri1/roots.txt exp/tri1/questions.qst data/
lang/topo exp/tri1/tree
Number of separate statistics is 19268
LOG (build-tree:BuildTree():build-tree.cc:162) BuildTree: before building trees, map has 52 leaves.
LOG (build-tree:SplitDecisionTree():build-tree-utils.cc:563) DoDecisionTreeSplit: split 1748 times, #leaves
now 1800
LOG (build-tree:BuildTree():build-tree.cc:188) Setting clustering threshold to smallest split 580.508
VLOG[1] (build-tree:BuildTree():build-tree.cc:197) After decision tree split, num-leaves = 1800, like-impr =
5.3741 per frame over 1.3679e+06 frames.
VLOG[1] (build-tree:BuildTree():build-tree.cc:201) Including just phones that were split, improvement is
6.13816 per frame over 1.19763e+06 frames.
LOG (build-tree:BuildTree():build-tree.cc:216) BuildTree: removed 378 leaves.
VLOG[1] (build-tree:BuildTree():build-tree.cc:223) Objf change due to clustering -0.103276 per frame.
VLOG[1] (build-tree:BuildTree():build-tree.cc:226) Normalizing over only split phones, this is: -0.11796 per
frame.
VLOG[1] (build-tree:BuildTree():build-tree.cc:229) Num-leaves is now 1422
<snip>
VLOG[1] (build-tree:main():build-tree.cc:160) For pdf-id 1119, low count 99
LOG (build-tree:main():build-tree.cc:208) Wrote tree

Drawing the decision tree
$. path.sh
$ draw-tree data/lang/phones.txt exp/tri1/tree | dot -Tps -Gsize=8,10.5 | ps2pdf - ~/tree.pdf

Drawing the decision tree

Drawing the decision tree

Drawing the decision tree

Decision tree leaves are integers (no names!)

We call these “pdf-ids”.

They are zero-based (i.e. numbered from zero)

Caution: some integer identifiers in Kaldi are
one-based (e.g. “transition-ids”)

This is for compatibility with OpenFst, where
zero is “special”.

Where possible we prefer zero-based indexing.

Decision tree leaves

Can share tree roots among phones

Same tree root for all the HMM-states of a phone
(or phone-set)

Ask questions about HMM-state.

Automatically obtained questions

Leaves post-clustered after tree splitting

Decision tree -- differences
from “standard” approach

Decision tree object: type “ContextDependency”

Written to file called “tree”

Maps from [window of phones, HMM-state] to
integer pdf-id.

E.g. (aa/n/d, 3) -> 1402

Decision tree object
$ less tree/context-dep.h
<snip>
class ContextDependency: public ContextDependencyInterface {
 public:
 virtual int32 ContextWidth() const { return N_; }
 virtual int32 CentralPosition() const { return P_; }

 /// returns success or failure; outputs pdf to pdf_id
 virtual bool Compute(const std::vector<int32> &phoneseq, int32 pdf_class, int32 *pdf_id) const;
...

This program reads the tree, tree accumulators,
and topology.

It outputs the model file 1.mdl

Initializing the model
$ cd ~/kaldi-trunk/egs/rm/s3
$ less steps/train_deltas.sh
<snip>
gmm-init-model --write-occs=$dir/1.occs \
 $dir/tree $dir/treeacc $lang/topo $dir/1.mdl 2> $dir/init_model.log

Write two objects to the model file.

“trans_model” (type: TransitionModel)

“am_gmm” (type: AmDiagGmm)

Some programs that read the model file, only read
the TransitionModel object.

This makes them model-type independent.

Initializing the model
$ cd ~/kaldi-trunk/src
$ less gmmbin/gmm-init-model.cc
<snip>
 {
 Output ko(model_out_filename, binary);
 trans_model.Write(ko.Stream(), binary);
 am_gmm.Write(ko.Stream(), binary);
 }
 KALDI_LOG << "Wrote tree and model.";

Note: “Output” object opens a generalized filename
(works with files, stdin/stdout, piped commands)

The Write functions of Kaldi objects take an
ostream, and a bool (for binary/text mode)

Idea is to make code easily refactorable (if they
took the “Output” object, too Kaldi-dependent.

Initializing the model
$ cd ~/kaldi-trunk/src
$ less gmmbin/gmm-init-model.cc
<snip>
 {
 Output ko(model_out_filename, binary);
 trans_model.Write(ko.Stream(), binary);
 am_gmm.Write(ko.Stream(), binary);
 }
 KALDI_LOG << "Wrote tree and model.";

Object DiagGmm is a single Gaussian Mixture
Model

Parameters stored in “exponential model” form for
fast likelihood evaluation

Convert to DiagGmmNormal for easy updates etc.
(this stores them more conventionally).

GMM code
$ less gmm/diag-gmm.h
<snip>
class DiagGmm {
 friend class DiagGmmNormal;
<snip>
 /// Returns the log-likelihood of a data point (vector) given the GMM
 BaseFloat LogLikelihood(const VectorBase<BaseFloat> &data) const;
<snip>
 private:
 /// Equals log(weight) - 0.5 * (log det(var) + mean*mean*inv(var))
 Vector<BaseFloat> gconsts_;
 bool valid_gconsts_; ///< Recompute gconsts_ if false
 Vector<BaseFloat> weights_; ///< weights (not log).
 Matrix<BaseFloat> inv_vars_; ///< Inverted (diagonal) variances
 Matrix<BaseFloat> means_invvars_; ///< Means times inverted variance

Object AmDiagGmm contains a vector of DiagGmm

Indexed by “pdf-id” (remember, this is a zero-
based integer index).

This object knows nothing about transitions,
topology, etc.

GMM model set
$ less gmm/am-diag-gmm.h
<snip>
class AmDiagGmm {
<snip>
 private:
 std::vector<DiagGmm*> densities_;
<snip>

Object TransitionModel responsible for storing
HMM transition probabilities

Also keeps track of HMM topologies (contains the
HmmTopology object)

Defines “transition-ids”-- an index that corresponds
with transition probs, and useful for other reasons.

Transition model
$ less hmm/transition-model.h
<snip>
class TransitionModel {

 public:
 /// Initialize the object [e.g. at the start of training].
 TransitionModel(const ContextDependency &ctx_dep,
 const HmmTopology &hmm_topo);

 void Read(std::istream &is, bool binary); // note, no symbol table: topo object always read/written w/o
symbols.
 void Write(std::ostream &os, bool binary) const;
<snip>
 // Transition-parameter-getting functions:
 BaseFloat GetTransitionProb(int32 trans_id) const;

The decision-trees are at the individual state level,
not the whole-HMM level.

Therefore there may be many more HMMs than
decision-tree leaves (combinatorial explosion)

We tie the transition-model parameters the same
way as the decision-tree leaves

although if the monophone/center phone is
different, we have a different transition-prob.

Transitions out of a given state are tied like that
state.

Transition parameters

End of this
lecture

