LELon
KEcogl
2
ed
SP@.

aide
tical qui
&
- a pra

Phonetic
Context Depen O

Steps covered in this lecture

|

|
[
|

O
O

v v v n n

R — — E— —

ca‘7faldi—trunk/rm/sé/

Get alignments from monophone system.
steps/align deltas.sh data/train data/lang exp/mono exp/mono ali

train tril [first triphone pass]

@ Aligning data with monophone system

D

Weakness of
"monophone” model

@ Phones “"sound different” in different contexts.

@ Most strongly affected by phones immediately
before/after.

@ Simplest model of context dependency is to
build separate model per “triphone” context.

@ For 38 phones, #models required is 38x38x38

@ Too many models to frain!

Traditional context-
dependency tree

@ Build a ‘decision tree” for each "monophone”

@ This follows the “Clustering and Regression
Tree” (CART) framework

@ Involves a “greedy” (locally optimal) splitting
algorithm.

@ Ask questions like “Is the left phone a vowel?”
Is the right phone the phone “sh”?

@ Models (HMMs) would correspond to the leaves

!
’
i
w

-, . v .

e A _
Square boxes correspond to Hidden Markov Models

Traditional tree-building

@ Train a monophone system (or use previously
built triphone system) to get time alignments
for data.

@ For each seen triphone, accumulate sufficient
statistics to train a single Gaussian per HMM
state

® Suff. stats for Gaussian are (count, sum, sum-
squared).

Ruk ok all

Eriphov\es seen!

o (38x38x38) * (3 HMM-states) * (39+39+1)

@ Total stats size (for 39-dim feats):

Bu |ld|ng fhe frlphone sysfem

o

/kaldi- trunk/rm/s3/ (= P B

C00o.
cd

Get alignments from monophone system. |
steps/align deltas.sh data/train data/lang exp/mono exp/mono ali

{
train tril [first triphone pass] .
steps/train deltas.sh data/train data/lang exp/mono ali exp/tril

-m-m-m-m-m-m-m-m:,

—— = - — — — — —— _ — —— — Bi— - —— — . E—

@ Align more of the training data using the
monophone model.

® We saw the alignment format last time
(sequences of integers)

@ Note: exp/mono has alignments too, but need it
on more data (and with very last model).

000

i $ cd ~/kaldi- trunk/egs/rm/sB

|
|
|

Ge’r’rlng da’ra allgnmem‘s

$ head -1 exp/mono ali/align.log

gmm-align --transition-scale=1.0 --acoustic-scale=0.1 --self-loop-
scale=0.1 --beam=8 --retry-beam=40 exp/mono ali/tree exp/mono ali/
final.mdl data/lang/L.fst 'ark:apply-cmvn --norm-vars=false --
utt2spk=ark:data/train/utt2spk ark:exp/mono ali/cmvn.ark scp:data/train/
feats.scp ark:- | add-deltas ark:- ark:- |' ark:exp/mono ali/train.tra
ark:exp/mono ali/ali

— — . = ——— = — e p— E—_— _ — —

@ Alignments go in file "exp/mono_ali/ali”
@ --beam=8, --refry-beam=40 important options
@ For Viterbi pruning

@ If dont reach end-state with beam=8, retry
with beam=40, then give up.

1

|
l

Building the triphone system

12

| f

|

wnnnnnonan|O

d ~/kaldi-trunk/rm/s3/ PR Ny =

Q

Get alignments from monophone system.
steps/align deltas.sh data/train data/lang exp/mono exp/mono ali

train tril [first triphone pass]
steps/train deltas.sh data/train data/lang exp/mono ali exp/tril

@ Rest of lecture will be about this stage.

|

|
|

Getting stats for tree

B - - _ e ————————— —— ————

7%4cd»:VigidiFtruhk/egs/fﬁ?éi T b 7
$ 1s -1 exp/tril/treeacc |
-rw-r--r-- 1 dpovey clsp 14M Feb 7 20:57 exp/tril/treeacc |

$ cat exp/tril/acc.tree.log |

acc-tree-stats --ci-phones=48 exp/mono ali/final.mdl 'ark:apply-cmvn --norm-vars=false -- |
utt2spk=ark:data/train/utt2spk ark:exp/mono ali/cmvn.ark scp:data/train/feats.scp ark:- | |

1 . . . |
add-deltas ark:- ark:- |' ark:exp/mono ali/ali exp/tril/treeacc |

apply-cmvn --norm-vars=false --utt2spk=ark:data/train/utt2spk ark:exp/mono ali/cmvn.ark
scp:data/train/feats.scp ark:- p
add-deltas ark:- ark:- ;
LOG (acc-tree-stats:main():acc-tree-stats.cc:113) Processed 1000 utterances.

LOG (acc-tree-stats:main():acc-tree-stats.cc:113) Processed 2000 utterances.]
LOG (acc-tree-stats:main():acc-tree-stats.cc:113) Processed 3000 utterances. |

— e _ — — —— — _ — __ _

@ Double-precision stafts.

@ Max. possible size is 3873%3%(39+39+1) * 8 = 104M

@ Actual size 14M (T15% of triphones seen).

Looking at tree stats

= = = = - _ s e e I _ P — 77; —

| $. path.sh —
$ sum-tree-stats --binary=false - exp/tril/treeacc | less |
BTS 19268 |
| EV 4 -1 0 0 INTo 2927 I
| T GCL 10 0.01 [
| -319.4122 -47.78007 221.1587 158.8115 335.7153 192.0782 20.63128 99.35792 -48.65273 |
71.48264 -30.99772 -121.76 16.75381 9.745302 26.61232 20.03452 31.32775 25.1797 8.662501 |
-11.21577 -10.93547 -5.706181 -8.542741 -17.79073 -14.53732 -4.358661 3.026504 -3.41487
-4.261815 -2.914604 -8.994694 -2.071367 -0.131388 3.215806 2.529252 1.733106 1.000433 ;

2.846173 5.605232

10381.26 1351.984 5520.843 4398.474 12389.38 4130.489 488.7585 1483.611 477.1437 822.2339
1032.555 1925.231 277.2069 19.61546 131.6582 93.57193 264.0651 142.572 61.74911 31.82133]
38.00629 46.85469 62.60578 108.7827 51.53504 58.33066 7.887114 18.35285 18.01356 37.78245

— —

@ This data is for HMM-state , phonetic context
(), = "<eps>/d/ih” (as in "DID” at start of
sentence).

® Count of 1st state is 10

@ Next two lines are data sum, sum-squared.

Looklng at tree s’ra’rs

— — —— - — = ———

yC)OO

(36 path sh '
‘ $ sum-tree-stats --binary=false - exp/tril/treeacc | less
| BTS 19268
| EV 4 =1 O 2 !
T GCL 10 [|
-319.4122 -47.78007 221.1587 158.8115 335.7153 192.0782 20.63128 99.35792 -48.65273
71.48264 -30.99772 -121.76 16.75381 9.745302 26.61232 20.03452 31.32775 25.1797 8.662501 s

-11.21577 -10.93547 -5.706181 -8.542741 -17.79073 -14.53732 -4.358661 3.026504 -3.41487
-4.261815 -2.914604 -8.994694 -2.071367 -0.131388 3.215806 2.529252 1.733106 1.000433 l
2.846173 5.605232

10381.26 1351.984 5520.843 4398.474 12389.38 4130.489 488.7585 1483.611 477.1437 822.2339

o There are states with stats (this is 3x
#seen triphones).
@ Object in yellow/orange/ is “Event Vector”

@ Consider as a set of key- pairs.

@ The is a variance floor (in here for C++
reasons, although shared among all stats..)

Fire a Linguist

@ The late Fred Jelinek (founding
director of the CLSP)

@ Reported to have said, "Every
time I fire a linguist, the error
rate goes down.”

@ Apparently he insisted this had
been taken out of context...

@ Fred championed the “purely statistical” approach
to speech recognition.

@ In the same spirit, in Kaldi we avoid the use of
"meaningful” hand-generated phonetic questions.

Clustering the phones

S less steps/train deltas.sh

i

: |

| |
|

<snip>

|
| echo "Computing questions for tree clustering" 4

cat $lang/phones.txt | awk '{print $NF}' | grep -v -w 0 > $dir/phones.list “
cluster-phones $dir/treeacc $dir/phones.list $dir/questions.txt 2> $dir/questions.log ||
exit 1;

s We cluster the phones qusio. i
® A question is just a set of phones.

@ Would normally be a phonetic category.

@ Here, just clusters based on acoustic similarity.

@ Tree clustering -> hierarchy of sets of all sizes.

Looking at the questions

| $ # scripts/int2sym.pl $lang/phones.txt < $dir/questions.txt > $dir/questions syms.txt
' $ less exp/tril/questions syms.txt

| aa

aa ae aw ay eh ey £ ow ts sil

| aa ae aw ay eh ey ow

aa ae aw ay eh ow
aa aw ay ow

aa aw ow

ae

ae eh

o Somz of the smallersmL mainl ,
@ Not all do, e.g. "aa” and “f” are not similar
@ Questions in next stage (tri2a) are a bit better

@ Presumably, monophone alignments are poor
quality.

Clustering algorithm

@ This clustering algorithm only used for a small
part of the system (getting the questions)...

® but useful introduction to Kaldis framework for
clustering and decision trees.

& Abstract C++ interface "ClusterableInterface”

@ Represents some kind of stats and associated
model type, from which we can get an
objective function

@ Stats can be added together.

Clusterable mferFace

. $ cd ~/kaldi-trunk/src) ZN o P o U R T e
‘ S less itf/clusterable-interface.h
class Clusterable {

(C0o0 - il L

‘ public:
<snip>
virtual double Objf() const = 0; // returns objective function
virtual BaseFloat Normalizer() const = 0; // typically returns data-count.

virtual void Add(const Clusterable &other) = 0; // Adds other stats to this...

virtual Clusterable *Copy() const; // Copy the object.
<snip>

@ Clustering routines act on generic objects
satisfying this interface.

@ In our stats, Objf() returns a Gaussian likelihood

o We'll split at the root to maximize the data
likelihood, then split each branch...

Clusterable object

©0 f a

' $ less tree/clusterable-classes.h
| <snip> |
' class GaussClusterable: public Clusterable {
' public:

|
|
<snip> |
virtual void Add(const Clusterable &other in);
virtual void Sub(const Clusterable &other in); |
virtual BaseFloat Normalizer() const { return count ; }
virtual Clusterable *Copy() const; ;

<snip> |
double count ; {
Matrix<double> stats ; // two rows: sum, then sum-squared.
double var floor ; // should be common for all objects created. |

— = == = — = e

® GaussClusterable represents statistics for a
Gaussian distribution.

@ Contains count, sum and sum-squared of data (as in
the tree-stats we saw).

Adding stats

00 _ BN S-SR RN T :

' $ less tree/clusterable-classes.cc NS O ey A e
| <snip>

' void GaussClusterable::Add(const Clusterable &other in) ({

\ assert(other in.Type() == "gauss");

const GaussClusterable *other =

static_cast<const GaussClusterable*>(&other in);
count += other->count ;
stats .AddMat (1.0, other->stats);

@ the Add() function is very simple-- just add the
stats together.

- Gefting likelihood

. $ less tree/clusterable-classes.cc

| <snip> |
| BaseFloat GaussClusterable::0bjf() const { |
h size t dim = stats .NumCols(); |
' Vector<BaseFloat> vars(dim);

| for (size t d = 0; d < dim; d++) {

|
|
|
double mean(stats (0, d) / count), var = stats (1, d) / count - mean |
* mean; |

var = std::max(var, var_ floor);
vars(d) = var; “
} |
BaseFloat ans = -0.5 * (vars.SumLog() + M LOG 2PI * dim); w
return ans * count ;]
} |
s 2L] 2 P e~ EES S . e SSsiA 2 WIE _ TR T e —

@ Compute the variance of the Gaussian
@ Return the expected likelihood, times the count...

@ Note: we apply a variance floor (otherwise the
likelihood can go to infinity).

|
| $ less bin/cluster-phones.cc [
| <snip> |
| AutomaticallyObtainQuestions(stats, !
| phone sets, l
| hmm position list, |
P, ‘
&phone sets out); ;

<snip>

——

@ Note: phone_sets and phone_sets_out both of
type vector<vector<int32> >

@ phone_sets Is just a single vector containing all
the phones, in our example

@ A mechanism to let you keep some phone sets
together through clustering.

Clustering code

ifﬁfcdniikéidi—trﬁﬁk/src P N T T VTR =y ’;V
| $ less bin/cluster-phones.cc
h <snip>

AutomaticallyObtainQuestions(, 4
phone_ sets, |
pdf id list, “
3 ;
&phone sets out); w

<snip>]

- _ —_——

. SRR 0 —_— - . ___|l
—— e ———— _ _ I — — —

o is of type BuildTreeStatsType
@ vector of pair<EventVector, ClusterableInterface*>
@ EventVector specifies phone, context, etc.

o pdf_id_list is by default a vector containing just

"1”... specifies to use only middle HMM-states stats
to cluster.

Clustering code

‘7$T5a2E7£;1di—trﬁEk/src p BT - SR i T e .
| $ less bin/cluster-phones.cc
h <snip>

AutomaticallyObtainQuestions(stats,

phone sets,
pdf id list,

<snip>

@ Note on coding style:

@ Variables for function outputs are passed by
pointer, and come after input parameters.

@ Style quide (derived from Google style guide)
dictates this.

Inside the clustering code

[C00 _inaw SN

ifﬁfle;szfée/buiia¥£ree.ééi77 N] T T VTR

|
“ BuildTreeStatsType retained stats; |
J FilterStatsByKey(stats, kPdfClass, all pdf classes,

true, // retain only the listed positions ﬁ
&retained stats);

L -y e —
— e

5 Looki?g at code of Au’roma’rillyb’raiesio

@ Call to FilterStatsByKey keeps only stats from

HMM-state 1 (middle HMM-state)... configurable via
all_pdf_classes variable.

@ Note: kPdfClass is an enum that evaluates to -1...
this is the EventMap “key” for "pdf-class” which is
normally synonymous with HMM-state.

Inside the clustering code

| void AutomaticallyObtainQuestions(<snip>) {
[

|
|
J std: :vector<BuildTreeStatsType> split stats; // split by phone.
SplitStatsByKey(retained stats, P, &split stats); ;

o _ —_— A — — — e — —_— e = —— — - E——

@ Next statement splits stats up according fo the
central phone (monophone)

@ Note: variable P (c.f. command-line option
--central-position) is the center of context-
window of phonemes.

@ Value of P is 1 for triphone, O for monophone.

Inside the clustering code

| void AutomaticallyObtainQuestions(<snip>) {

;

std: :vector<Clusterable*> summed stats; // summed up by phone. |
SumStatsVec(split stats, &summed stats); |

o _ —_— A — — — e — —_— e = —— e e— — - E——

@ Next statement sums up all the stats for each
phoneme (over all contexts, HMM-positions).

@ Type of stats is now vector<Clusterable*>

@ L.e. we dont have the EventVector any more,
that specifies context etc.

® Phone is just index into vector.

Inside the clustering code

o0 A ST . B
. $ less tree/build-tree.cc

{ void AutomaticallyObtainQuestions(<snip>) {

[

|
| TreeClusterOptions topts;

| topts.kmeans cfg.num tries = 10; // This is a slow-but-accurate setting,
// we do it this way since there are typically few phones.

|
!

|

std::vector<int32> assignments; // assignment of phones to clusters. dim ==

summed stats.size().
std::vector<int32> clust assignments; // Parent of each cluster. Dim == #clusters.
int32 num leaves; // number of leaf-level clusters.

TreeCluster (summed stats per set,
summed stats per set.size(), // max-#clust is all of the points.
NULL, // don't need the clusters out.
&assignments,
&clust assignments,
&num_ leaves,
topts);

|

@ Here is the main call to tree-clustering routine.

— — _ — — — — E— - —_——e ———— —

Compiling the questions

©00 R | - T R

. $ cd 1/E§1diétfunk/égs/f57337

| $ less steps/train deltas.sh
I

. <snip>
compile-questions $lang/topo $dir/questions.txt $dir/questions.qgst 2>$dir/compile questions.log

| <snip> V

$

@ Program “compile-questions” takes lists of
phonemes...

@ Transforms it into a C++ object (written to disk)
that contains questions for each “key” in EventMap

@ Sets up questions about HMM-state (0,1,2)...

@ Here, some options can be set that affect tree-
building.

Setting tree roofs

0o oo ¢ ..’ e, L Py
' $ cd ~/kaldi-trunk/egs/rm/s3
! $ less steps/train deltas.sh]
. <snip>]

Have to make silence root not-shared because we will not split it.
1 scripts/make roots.pl --separate $lang/phones.txt $silphonelist shared split \ |
| > $dir/roots.txt 2>$dir/roots.log || exit 1; V

<snip>

- — ———— = E—

@ Set up sets of phones with “shared roots” for trees

@ In this case, all phones have separate tree root

@ If phones only differ in stress or tone etc., can be
useful to share roots

@ This way, unseen variants still get a model.

Looking at roots file

0o —— "SR o P
. $ less exp/tril/roots.txt N] o - |
' not-shared not-split 48 |
| split 33

— _ i i L NS ¥ _— — e —

' shared split 32 |

J shared split 21 |
shared split 7 V

shared split 26

shared split 17

= — = E— e e — _ _ _ — — - —

@ Note: infegers correspond to phones; in general,
can have lists of integers (to share roots).

o means HMM-states 0,1,2 share a root (can
ask questions about HMM-state/pdf-id).

@ split means we build a decision tree for this root
(else, leave an un-split stub).

Building the decision tree

0o e, R . Ir .
' $ cd ~/kaldi-trunk/egs/rm/s3 AP LR) e . N, |
$ less steps/train deltas.sh

. <snip>

echo "Building tree"

1 build-tree --verbose=1 \

$dir/treeacc $dir/roots.txt \ V
$dir/questions.gst $lang/topo $dir/tree 2> $dir/train tree.log |

— = — —— e —— = —— — — R

@ Actually a set of decision trees (one per root)
@ The (e.g., 2000) is number of p.d.fs

® Some post-clustering done within each tree, after
splitting.

@ This shares leaves, but only within each tree
(e.g. per phone, not globally)

|

|

Building the decision tree

$ less zib/i}ii/traiﬁ:tree.logv

build-tree --verbose=1 --max-leaves=1800 exp/tril/treeacc exp/tril/roots.txt exp/tril/questions.gst data/

lang/topo exp/tril/tree

Number of separate statistics is 19268

LOG (build-tree:BuildTree():build-tree.cc:162) BuildTree: before building trees, map has 52 leaves.

LOG (build-tree:SplitDecisionTree():build-tree-utils.cc:563) DoDecisionTreeSplit: split 1748 times, #leaves

now 1800

LOG (build-tree:BuildTree():build-tree.cc:188) Setting clustering threshold to smallest split 580.508

VLOG[1l] (build-tree:BuildTree():build-tree.cc:197) After decision tree split, num-leaves = 1800, like-impr =
per frame over 1.3679e+06 frames.

VLOG[1l] (build-tree:BuildTree():build-tree.cc:201) Including just phones that were split, improvement is

6.13816 per frame over 1.19763e+06 frames.

LOG (build-tree:BuildTree():build-tree.cc:216) BuildTree: removed 378 leaves.

VLOG[1l] (build-tree:BuildTree():build-tree.cc:223) Objf change due to clustering -0.103276 per frame.

VLOG[1l] (build-tree:BuildTree():build-tree.cc:226) Normalizing over only split phones, this is: -0.11796 per

frame.

VLOG[1l] (build-tree:BuildTree():build-tree.cc:229) Num-leaves is now 1422

<snip>

VLOG[1l] (build-tree:main():build-tree.cc:160) For pdf-id 1119, low count 99

LOG (build-tree:main():build-tree.cc:208) Wrote tree

— = ———— — = - I — E—— _ _ — I ——

@ Likelihood improvement from tree splitting is
important diagnostic.

@ More likelihood improvement is generally better
(means context is helping more).

— e — e ____ [e

Drawing the decision tree

- E— S— P —— E—

©

$.
$

= e — - _

oY | | SO Y N

pé£h:éh
draw-tree data/lang/phones.txt exp/tril/tree | dot -Tps -Gsize=8,10.5 | ps2pdf - ~/tree.pdf

P Y Wy T b8 B SR RE LR T

=TS 5y : x S5 " : _ =7

4o

Drawing the decision tree

Drawing the decision tree

Drawing the decision tree

g_n_\m state = 7

4

C RContest=? D
~ SR ‘ﬂ\
> 4 \

4
4
."n.. AR, OB er. D, 0oy, 1, ub, u),‘.\'u

(:- RContest = 7

Decision tree leaves

@ Decision tree leaves are integers (no names!)
@ We call these "pdf-ids”.
@ They are zero-based (i.e. numbered from zero)

@ Caution: some integer identifiers in Kaldi are
one-based (e.g. “transition-ids”)

@ This is for compatibility with OpenFst, where
zero is “special”.

@ Where possible we prefer zero-based indexing.

Decision tree -- differences
from “standard” approach

@ Can share tree roots among phones

® Same tree root for all the HMM-states of a phone
(or phone-set)

@ Ask questions about HMM-state.
@ Automatically obtained questions

@ Leaves post-clustered after tree splitting

Decision ftree object

e

(COC i i

o e = - = — S _— — — 4|‘

17$jlesssffégycontexE:dep.h ' 7) By = &F 'Y L -
| <snip>

d class ContextDependency: public ContextDependencyInterface {
‘ virtual int32 ContextWidth() const { return N ; }
virtual int32 CentralPosition() const { return P _; }

‘ public:

|
/// returns success or failure; outputs pdf to pdf id |
virtual bool Compute(const std::vector<int32> &phoneseq, int32 pdf class, int32 *pdf id) const;

.

@ Decision tree object: type "ContextDependency”

@ Written to file called “tree”

@ Maps from [window of phones, HMM-state] to
integer pdf-id.

@ E.g. (aa/n/d, 3) -> 1402

o o o o
Initializing the model
©00 L T Y 2
| $ cd ~/kaldi-trunk/egs/rm/s3
$ less steps/train deltas.sh

S , - - - - S E—— — _f]

e Tt e TN |

. <snilip> |
| gmm-init-model --write-occs=$dir/l.occs \ l
| $dir/tree $dir/treeacc $lang/topo $dir/1l.mdl 2> $dir/init model.log v

|

__ o - — —_— e e — I I —

@ This program reads the tree, free accumulators,
and topology.

@ It outputs the model file 1.mdl

Initializing the model

oo d
. $ cd ~/kaldi-trunk/src
| $ less gmmbin/gmm-init-model.cc

d <snip>

| { |

(Output ko(model out filename, binary);

| trans model.Write(ko.Stream(), binary);

am gmm.Write(ko.Stream(), binary); \
} !

KALDI LOG << "Wrote tree and model."; V

e —— — — — — — — — — = — —— N — _— ——

@ Write two objects to the model file.
@ "trans_model” (type: TransitionModel)
@ "am_gmm” (type: AmDiagGmm)

® Some programs that read the model file, only read
the TransitionModel object.

@ This makes them model-type independent.

. $ cod VEilci e

|
|

|
|

Initializing the model

©00 e T R Ll

$ less gmmbin/gmm-init-model.cc

<snip>
{ |
Output ko(model out filename, binary); |

trans model.Write(ko.Stream(), binary);

am gmm.Write(ko.Stream(), binary);]
} {
KALDI LOG << "Wrote tree and model."; V

— _ — = = - — = = e — = - —— - - E— ——

@ Note: "Output” object opens a generalized filename
(works with files, stdin/stdout, piped commands)

@ The Write functions of Kaldi objects take an
ostream, and a bool (for binary/text mode)

@ Idea is to make code easily refactorable (if they
took the "Output” object, too Kaldi-dependent.

== = e e — — E—— — —]
3 |
Q00 : e . - - aee NI *]
. $ less gmm/diag-gmm.h g - Y . T T 1
{ <snip>
| class DiagGmm { :
i friend class
<snip>
|(/// Returns the log-likelihood of a data point (vector) given the GMM
|
|
\

BaseFloat LogLikelihood(const VectorBase<BaseFloat> &data) const;

<snip>

private: |
/// Equals log(weight) - 0.5 * (log det(var) + mean*mean*inv(var))
Vector<BaseFloat> gconsts_;]
bool valid gconsts_; ///< Recompute gconsts if false {
Vector<BaseFloat> weights_ ; ///< weights (not log). V
Matrix<BaseFloat> inv vars_ ; ///< Inverted (diagonal) variances |
Matrix<BaseFloat> means invvars ; ///< Means times inverted variance |

o Object DiagGmm is a single Gaussian Mixture
Model

@ Parameters stored in “exponential model” form for
fast likelihood evaluation

@ Convert to for easy updates efc.
(this stores them more conventionally).

GMM model set

d class {

‘ private:
I std::vector<DiagGmm*> densities ; |
<snip> V

— — — - — = = — — _ — — — — e — _ - — — —

@ Object AmDiagGmm contains a vector of DiagGmm

@ Indexed by “pdf-id” (remember, this is a zero-
based integer index).

@ This object knows nothing about transitions,
topology, etc.

Tra‘!nsifion f

17<f —— _ R —
©oo s A U R N sl
. $ less hmm/transition-model.h) - N Ve Y T - 2 w
| <snip>

| class TransitionModel {
| l |
‘ public: |
|(/// Initialize the object [e.g. at the start of training]. ‘
TransitionModel (const ContextDependency &ctx dep, |
const &hmm topo); !

|

void Read(std::istream &is, bool binary); // note, no symbol table: topo object always read/written w/o |
symbols. |
void Write(std::ostream &os, bool binary) const; {

<snip> V
// Transition-parameter-getting functions:
BaseFloat GetTransitionProb(int32 trans id) const;

— —= = = = — ——— — — e —

@ Object TransitionModel responsible for storing
HMM ftfransition probabilities

@ Also keeps track of HMM fopologies (contains the
object)

@ Defines “transition-ids”-- an index that corresponds
with transition probs, and useful for other reasons.

Transition parameters

® The decision-trees are at the individual state level,
not the whole-HMM level.

@ Therefore there may be many more HMMs than
decision-tree leaves (combinatorial explosion)

@ We tie the transition-model parameters the same
way as the decision-tree leaves

@ although if the monophone/center phone is
different, we have a different transition-prob.

@ Transitions out of a given state are tied like that
State.

